
NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL MEMORANDUM 1351

ON TEE DESIGN OF AIRFOILS IN WHICH THE TRANSITION

OF THE BOUNDARY LAYER IS DELAYED

By ItiroTani

Translation of “Ky?5kaiso no Sen’i o okuraseru Yokugata ni tuite.”
Report of the Aeronautical Research Institute,Tokyo Imperial

University, No. 250 (vol.19, no..1),Jan. 1943

Washington

October 1952

-+...
-..

J



TECHLIBRARYKAFB,NM

U?

.

.

NATIONAL ADVISORY COMMITJ!31E
.

FOR AERONAUTICS 014448b

1

TECHNICAL MEMORANDUM 1351

ON TEE DESIGN OF AIRFOIIS IN WHICH THE TRANSITION

OF TEE BO-Y LAYER IS DELAYED*

By Itiro Tani

=ODUCTION - IAMINAR-FIQW AIRFOIIS

1. In high speed flight conditions, the drag of an airfoil is
almost exclusively due to skin friction. Therefore, if further reduc-
tion in drag is desired, it is necessary to.delay as much as possible
the transition from laminar to turbulent flow in the boundary layer along
the surface, thus decreasing the extent of the turbulent boundary layer
which gives considerable skin friction. As the factors that may affect
the transition, we will consider the stream turbulence, the surface
roughness, the surface pressure distribution, and so on. In actual
flight conditions, however, the effect of turbulence seems to be unex-
pectedly small, so that, so far as smooth surfaces are concerned, there
remains only the shape of the airfoil section in relatlon to pressure
distribution as the most important factor affecting transition. We call
a kminar-flow airfoil that airfoil in which the shape of the section
is suitably designed so as to delay the transition of the boundary

‘a layer flow. .

2. It is evident that the laminar separation of the boundary layer
. may cause the transition, as will be mentioned in the appendant part of

the paper, paragraphs 35-40. We cannot expect, therefore, to matutati
laminar flow beyond the separation point. Summarizing the results of
flight experiments on airfoils hitherto made (refs. 8 to 12), we have
the conclusion that the observed transition coincides approximately with
the calculated laminar separation point at small Reynolds numbers, while
it ncwes upstream toward the mfnimumpresmre point as the Reynolds
number increases. However, no example has ever yet been observed in
which the transition nmves ahead of the minimum pressure point. We
therefore arrive at the supposition that the laminar-flow airfoil may be
nmt simply realized by designing the airfoil b which the minimum pres-
sure occurs well downstream.

.
%y5kaiso no Sen’i o okuraseru Yokugata ni tuite!’ Report of the

Aeronautical Research Institute, Tokyo Imperial University, No. 250
. (vol. 19, no. 1), Jan. 1943.
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NACATM 13512

DESIGN OF SYM@?I’RICAL

PRESSURE

AIRFOIIS IN WHICH

(X!CURSDOWNSTREAM

THE MINIMUM

3. Following Professor

along the chord in the form

~ = m to the leading edge,

Moriya (ref. 13), we write the coordinate

x= $(l+cos ~), and assign x=O,

anax=l, ~ = O to the trailing edge.

I Expressing the ordinate of the mean camber line by

and the half-thickness measured normal to the chord

I the-pressure distribution around the airfoil in the
potential flow is given by

:=l.

= 1-

M=~~cosn~,
0

.
byT= r bn sin n~ 1$

1
two-dimensional

!-.

cos a
{

-Lsin~+~n~(l-
+ 2.

coE n~) ; ~ n% sin nE.
1 1 }

— L 4_

( )l+ fAs~eBc2

~he ordinates of the upper and lower surfaces are~givenby M +T
and M - T, respectively.
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NACA TM 1351 3

where a is the angle
foil surface, meaeured
and q is the dynamic

of attack, p is the pressure acting on the air-
from the static pressure of the undisturbed stream,
pressure of the undisturbed stream. We assume that

the trailing edge is sharp, so that r% n= o. We limit the range of
1-L

the variables .5 between O and x, and assign the upper and lower
parts of the double sign for the upper and lower surfaces, respectively.
Writing f for the maxtium value of M (the maximum caniber)and e for
the maximum value of 2T (the maximm thickness), we put

. ..-

The lift coefficient is given by

r cos ng dT
eBc = 2 nbn — =-—

1 sin 5 dx

,_

CL = 2Jt
{
sins-2 r n% cos a

1 \L a

We consider first only the thickness of the airfoil (the camber of
the center line will be considered in the next section, paragraphs 8
to 11). Namely, we consider the.symmetrical airfoil section set at zero
angle of attack, with a view to obtatiing the minimum pressure well
downstream.

4. We adopt as the typical example of the commonly used symmetrical -
airfoils the NACA symmetrical airfoil (ref. 14)

T =
{

e 1.4843$Z- 0.6300x -
}

1.7580# + 1.4215x3 - 0.5075x4

The maximum thiclmess is located at x = 0.3, the leading-edge radius is

1.1e2, and the trailtig-edge slope -(dT/dx)x=l is 1.17e. The pressure

distribution for the case e = 0.1 is shown h figure 1. The minimum
pressure is located at x = 0.1, and the lam3nar separation Wint,
determinedly the approximate method due to the author (refs. 15 and 16),
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atx= 0.61.
move upstream

If the transition
beyond the lamlnar

NACA TM

petit of the Imundary layer would
separation point, we might expect

1351

not
to

maintain a laminar boundary layer for more than l&lf the surface of the
airfoil. The flight e~eriments hithert& made, however, appear to give
negative evidence for such a conjecture.

5. Now, in order to shift the minimum pressure backward, it is
required to shift the position of maximum thickness (x = m) backward.
For designing such airfoils, we represent the shapes of parts
and after the maximti thiclmess by two algebraic expressims.

forwardhalf(osxsm)

T=e

{ 1~+hlx+$~

.

while for the rear half (m= x= 1)

T
{ }

= e 0.01 + dl(l - x) + %(1 . X)2 + d3(l - x)3

where

2- 3@Gi ~ fz%ii:l
hl =

2m
=—

~2

before
For the

1.47- 2dl(l - m)
‘%=

dl(l -m) - 0.98
d_3=

(1 - m)2 (1 - m)3

and we ass3& arbitrary values for three parameters, m, h (= leading-

edge radim ~ #), and d~”(= trailing-edge slope ~ e). Although the

method has the drawback that the two expressions give different values

of d%7/d# at x = m, where d!I!/dxbecomes zero, we nevertheless
adopt it because we are in a position to vary the forward and rearward
parts most simply and independently.

6. First, we fix the forward half with m= 0.5 and h . O.~, and
vary the rear half by givtng dl the value~ 1.7, 2.0, 2.5, and 3.0,

respectively. The shape of the section and the pressure distribution
for e = 0.1 are 6hown in figure 2. We find from this result that, as

.-

●

✎
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.

dl increases, the minimum pressure point moves backward and the gradient
,

of pressure rise following the minimum pressure steepens. We also ftnd
that the pressure distribution in the neighborhood of the”minimmmpres-
sure exhibits a wavy indentation when the value of dl is too small or

too.large, and that there exists a certain value of dl for which the

pressure distribution is flat and smooth. Such a value of dl is about
2.5 in this case. We therefore fix the rear half with dl = 2.5, and

vary the forward half by giving h the values 0.35, O.~, 0i70, and
1.05, respectively. The shape of the ~ection and the pressure distri-
bution for e = 0.1 are shown in figure 3. From this comparison, we
find that the negative pressure bump immediately behind the leading
edge decreases as h decreases, and that the maximum permissible value
of h is about 0.7.

The effect of thickness is shown in figure”l, in which curves of
pressure distribution are given .fordifferent values,of e, 0.06, 0.10,
and 0.14, but for a fixed set of parameters, m = 0.5, h = 0.5, and
d~ = 2.5. It is seen that the characteristics of the pressure distri-
bution do not materially change with thickness. There is, however, a
slight change in the pressure distribution, the maximmn permissible
value for h slightly increastig as the thickness increases.

To see the effec$ of the position of maximum thickness, we give m
values ranging from 0.35 to O.@, varying at the same time values of dl
and h so that the pressure distribution becomes flat and smooth. The
result of calculation is given in figure 5, which shows a considerable
change in the position of minimum pressure. The change is not purely
due to the effect of m, but it is at any rate to be noticed that the .

value of m less than 0.4 is not sufficient for shifting backward the
minimum,pressure, while increasing the value of m beyond 0.5 is of no
advantage, since the backward shift is then almost saturated, ~ly the
adverse pressure gradient being increased.

7. From the results of calculation, we thus arrive at the conclusion
that m must be between 0.4 and 0.5 and h must be less than 0.7 In order
that the mtiimum pressure occurs well downstream. Smaller values of h
are desirable, but, on the other hsmd, we should like to make h as
large as possible, because a large value of h will be advantageous in
increasing the maximum lift coefficient and in preventing the inception
of adverse pressure gradient when the angle of attack is slightly changed.
Even if we give h the maximmm permissible value 0.7, the leading-edge
radius amounts to only 60 percent of that for the conventional NACA sym-
metrical airfoil of the same thickness. In order to ticrease the leading-
edge radius, it is required to increase the thickness, which in turn is
accompanied by an increase in adverse pressure gradient following the
minimum pressure. The adverse pressure gradient should be kept within a
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certain limit, so that it becomes necessary to make a compromise between
conflicting requirements. Thus, we are no longer in a position to
require the farthest possible rearw&rd location of the minimum pres-
sure. We should also use a value of dl which is somewhat smaller

than that mentioned previously.

Taking these requirements into account, we finally arrive at the
design of a series of symmetrical airfoil sections, the parameters of
which are given in the following table:

Section

I
J
.K
L
‘M
N

dl

2.384
1.800
10575
1.400
1.Ip
1.000

PoOition-of
minimum pressure

0.63
● 55
.51
.47
d~

Although section I is the most ideal for delaying the transition, in
practice, its extraordinarilysharp nose and blunt tail are draw~acks.
On the other hand, section N Is too much compromised.. Sections K or L
seem to be suitable as laminar-flow airfoils for practical use. The
ordinates of these six sections are given in table 1, “whilethe auxiliary
functions B~ and Bc associated wi,ththe pressure distribution (see

paragraph 3) are given in tables 2 and 3, respectively. The shapes of
the airfoil sections and the pressure distribution for e = 0.1 are
shown in figure 6.

DES”IGN0; MEAN CAMBER LINE SUITAEUZ FOR IAMU?AR-FLOWAIRFOIIS

8. A symmetrical airfoil set at zero angle of attack has no lift.
In order to obtain lift, the center line of the symmetrical airfoil must
be curved with a suitable camber. Since the effects of thickness and
camber are nearly additive with regard to the pressure distribution, the
mean camber line which maintains the nature of the pressure distribution
of the symmetrical airfoil will be such that it shall give a uniform dis-
tribution of pressure difference when the thictiess is removed. Evidently,
the center of pressure is then located at x = 0.5, so that such a catier
line has the drawback that the travel of center of pressure is consider-
able. To reduce the travel of center of pressure, the uniformity of pres-
sure difference should be satisfied only in the forward part of the chord.
From the standpoint of designing the laminar-flow airfoil, however, it is

.



NACATM 1351 7

. only required that the distribution of pressure difference is uniform
from the leading edge to that potnt corresponding to the mintium pres-
sure of the symmetrical airfoil.

.

9. When the angle of attack cc iS small, the expression for Pres-
sure distribution given in paragraph 3 may be put tito the form

( )Since the effect of the term fA~ t eBc is very small, the quantity

is required to be constant in order that the caiber line shall not change
the nature of the pressure distribution of the symmetrical section. The
range of constancy is at least up to the position of minimum pressure of
the symmetrical section. Putting cos ~ = u = 2x - 1, and considering
for simplicity the case when the minimum pressure is located at u = O,

b we prescribe that

. G=

G=

constant = Go

Go(l - U?)m,

See figure 7. Moreover, since

fG= -2~ n%
1- cospE+l-coska

1 sin k sin g

m

a cannot be arbitrary, but must be so chosen that the right side of the
equation does not become infinite at the leading edge, ~ = YC. It iS

given by
.
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a

where (r) denotes that only odd
is the so-called ideal angle of

“f?%
1

integers should be taken for n. This
attack due to Theodorsen (ref. 17).

Using the assumption of the thti wing theory, we neglect the terms eBs

and (fA~ ~ eBc). We then have

c~=2(l + %@o
f

Yr/2
sti2rn+l~~g

% =
o

l+(l+m)~
Cmo = - CL

4(1 + m)(l + am)

where C@ is the moment coefficient about the leading edge (positive

when nose up) at CL = O. Although m = O corresponds to the case of

making G uniform up to the trailing edge,.it seems to be Impossible
to realize a finite pressure difference at the trailing edge. Moreover,
the quantity the degree of center of pres-‘CmO~L (which represents .

sure travel) is as large as 0.25 in this case. If m>O, G vanishes
at the trailing edge, and -Cmo/CL decreases as m increases, tending

to O as m approaches m. m“= m corresponds to the case when G = O
in the rear half of the chord. Increasing the value of m, however,
steepens the pressure gradient, so the value of m from 3 to 5 seems h
be adequate.



2R

.

.

NACA TM 1351

‘Now,since

9

the slope of the camber line having the prescribed distribution of G
is given by

r .
r

CL

~1-

1
=Gl+— log ~

l+am
+(1- u2)m log 1 - u ~

l+U u

1

f

l(ldg’)m-(l+fqrn l-jdv +2 2 n%
o u-v 1.

The ordinate of the camber ltie is obtained by the integration

M.rx=dx

~ n% MY be determined by the condition

call ~ the camber line thus determined.

lines for m = OS l} 3J 5, and ~, namely

that M =0 at x

The equatiorisfor

= 1. We

camber

and Dm,

.

.
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I

are given below, their important charact~risticsbeing smrized ~~the
table. It is to be noted that f is the maximum value of M, G

9

the absolute value of the zero-lift augle, and c -and a are measured
in radians.

T
m a/cL

00
I , .0380
3 .0609
!5 .0703
w .1103

~/cL

o.1~
● 1211
.0983
.0888
.0488

f/cL

0.0552
.O-pl
.0790
.0816
.0874

-cmo/cL

0.250Q
.179
.1213
.0979

0

.

1Do: #=1-—
2.log 2 {

(1 - u) log (1 - U)+(l+u)lodl+u)j

41r
D1:—M=; (5 + u) log 2 -;.(l+u) log(l+u)+;us logpl-

cL

;(l-u)2(2+ u)log(l-u)+; (2-u2)

35(l+u)log(l+u)+
km

D3: ~M=~ (51 +19U) log 2- ~

L U3(35 - 21U? + 5U4)
51

$ (I - U)4(16 + 29u +

log /uI -

20U2 + 5U3) log (1 - u) +

- 17!2u2_+30U3 + auk)

“

.

I

r

..

.
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Q@+ll)log(l+ u)+4XD5: ~ M = ~ (949 + 437U) log 2 - 4
. 949 949

& ~3(1155 -
949

1386u2 + 990U4 - 385u6 + 63u8) log Iu I -

~ (1 - U)6(256 + 843u + W18U2 + g38u3 + 378u4 +al.-y+y

63u5) log (1 - U)

31680U3 + 68792u4

1Din:; =—
{
(1 +U) log2

log 3

+&#l-u2) (35072 -28535u - 66Q88u? +

17430U5 - 36Z20U6 + 37&)u7 +

-(l+ u) bg(l+u)+u log

———

7560J3)

UI}

..

Shapes of these camber lines are shown in figure 7, the ordinates
of them are given in table 4, and the auxiliary functions A= and As

. (see paragraph 3) and the pressure difference distribution G are given
in tables 5, 6, and 7, respectively.

10. The calculation made previously is only approximate, neglecting
the thickness. It is therefore desirable to check the result by actually
calculating the pressure distribution for the specified angle of attack
taking both camber and thickness into account. As an example, we con-
struct an airfoil by a~lying the thickness form K with e = 0.15 nor-
mal to the chord around the camber line D5 with f = 0.02 (tQe
resulting airfoil is designated as D+ - 2015)0

..-—
We calculate the pres-

sure distribution by the formula of paragraph 3 for the optimum design
condition a = 0.9° and CL = 0.245. The result is shown in figure 8.

The nature of the pressure distributtin remains similar to that of”the
symmetrical airfoil, so we may consider that the approximate determina- ‘“-‘
tion neglecting thickness gives results sufficiently accurate for practi-
cal purposes.

11. In designing the camber line .~, we have assumed for simplicity
. that the pressure difference G is constant for u< O.

to the case when the symmetrical airfoil has its minimum

*

#

This corresponds
pressure in the .

—
.._
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neighborhood of u = O. Therefore, the catier line ~ 1s adequate.to *..

be combined with the symmetrical section J or K. If, however, the
symmetrical section is adopted in which the minimum pressure is located ““ .
further upstream, it is not only not.neoessary to mal@ati G const~t
up to u= O, but also of disadvantage because it makes it difficult to
reduce the value of “mO/cL#

To reduce the range over which G should tiematitained constant,
we may proceed in the following way. Assuming for instance that G

should be constant from u = -1 to u = - ~
3’

and using a new variable

= ~ (1 + 3u), we prescribe that
L

U1

G = Go

G = Go(l - ~12)3

The calculation may be performed similarly to the case of Dm. The

resulting camber line is designated as I?3● The eambe;line lying in

the middle between F3 and D5 is also designed, and designated as E4.

Their important characteristicsare given in the following table together
with those of D5. Other numerical data fathese camber lines are given

in tables 4 to 7.

Camber line a/cL @L f/CL -CmO/CL

D5 0.0703 0.0888 0.0816 0.0979

E4 .0752 .0840- .0813 .0859
F3 .0764 .0827 .0795 .0833

—
Stnce the camber llnes E4 and l?3 enable us to maintain G con-

stant up to the point x = 0.42 and x = 0.33, respectively, they are
adequate to be combined with the symmetrical sections L and M, respec-
tively. The pressure distribution is shown in figure 10 for the airfoil
obtained by applying the
camber line F3 with f

to a= 1.1OO and CL =

thickness form M with ‘e =-0.15 around the
= 0.02. The optimum design con.d~tioncorresponds.
0.252.

.-

1

.

.

—

.

.
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EXPERIMENTS ON LAMINAR-FLOW AIW?OIIS

13

.

12. In order to ascertain whether it is possible to prevent the
forward nmvement of the boundary layer transition by shifttig the mini-
mum pressure on the atifoil surface, we have to perform experiments in
a low turbulence wind tunnel or on the actual airplane fn flight. When
the Reynolds number is not too large, however, we can still use a con:
ventional wind tunnel in which thestream turbulence is relatively small.
So we made at first comparative measurements on two symmetrical airfoils,
NACA 0010 ‘andL.B. 24 in the 1.5 m wtid tunnel of the Aeronautical
Research Institute. L.B. 24 is a laminar-flow airfoil of 10 percent
thickness, already shown in figure 3. The theoretical pressure distri-
bution is also given in figure 11. The minimmpessure is located at
x = O.@, and the laminar separation at x = 0.77. The wind tunnel was
of the lowest turbulence level available for the author, the critical “

Reynolds number of a sphere betig 3.66 x 105 and the transition Reynolds

nuniberof a flat plate 1.05 X 103 (see paragraph 28). In order to raise ‘--
the Reynolds number as high as possible, unusually large models were
used. They were made of laminated mahogany, of highly polished surface,
of 0.8 m span, of 1.2 m chord, and fitted with end plates 1.3 m X 0.6 m.
Since the model was large compared with the size of the tunnel and the
end plates were not sufficiently large, the results for a given airfoil
may not corres~nd even approximately with those for the same airfoil ~ “-
an undisturbed two-dimensional flow. Our object, however, was merely
to ascertain the relation between pressure distribution and transition,
and it seemed reasonable to expect that the relation will not be seriously -‘
affected by limitations in the conditions of the e~erilnents. As a matter “-
of fact, marked difference was found in the calculated and measured dis-
tributions of pressure, the latter of which was measured along the medi~”
section of the model with a static ttie of 1 mm diameter (fig. @.2
This discrepancy, however, is hnmaterial, since our object was merely to
compare the two airfoils, both of which are affected quite similarly by
experimental limitations.

13. The angle of attack of the model was zero, and the wind speed
was varied from 6 to 40 ~s. The local drag of the median section was
determined from wake measurements, that were made in the section 11 cm
behind the trailing edge. Measurements of static and total pressures h
the wake were made, respectively, with a static tube of 2.5 mm efiemal
diameter and a pitot tube with a flattened mouth of 0.65 mm external
depth and 2.6 -width. The profile drag coefficient C% was obtained

%he measured values are those for a Reynolds number of about 2 X 106.
The distribution of pressure changes but little with the Reynolds number.

.
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from the
presents

length.

measured pressures by
CDO plotted agatiSt

For a lower rangeof

Jones’ formula (ref.-18). Figure 13 3
Reynolds number R referred to chord

R, the drag of L,B. s! is higher than
.

tha; of I?ACA0020, the reason probably being that a turbulent boundary
layer associated ;ith the laminar separation is established at a higher
Reynolds number for the former airfoil than for the “latter. For a higher
range of R, however, the condition is reversed, L.B: 24 giving a drag

less than half that ofNACA 0010 for R higher than-2 X 106. This is
probably due to the fact-that the transition may occur much later for
L.B. 24 than it does for NACA 0010, as also observed.from the compari-

son of wake conditions for the two airfoils (fig. 14).4
—

14. In order to verify the aforementioned suppoa!tion, a pitot tube
“with a flattened mouth of external depth 0.9 mm and width 2.7 mm was
placed in contact with the airfoil surfacej.and the wind speed, and con-
sequently the Reynolds number R, were determined at which the indicated
total press~e G* divided by the dynamical.~ressure q of the undis- i
turbed stream begins to rise”suddenly. The results are shown in fig-
ure 17. From this figure, the dependence of the transition point on
Reynolds number as shown in figure 16 2s bbtained. At the same Reynolds
number the transition occurs much farther-from the leading edge for
L.B. 2~ than forNACA 0010. Even at the highest Reynolds number reached,
L.B. 24 has a transition as far back as x = 0.80. This is somewhat
beyond the laminar,separation point, x = 0.77, wh~ch~is calculated from
the theoretical pressure distribution. However, this is not-contradictory,
because the actual pressure distribution differs from the theoretical one -
in a manner to delay the transition (fig. 32). —

15. With further increase in Reynolds riumber,the-transition may .

move toward the leading edge, but it seems improbable that the transition
moves forward beyond the minimum pressure. It is highly desirable to
check this point also by wind tunnel experiments, but all the wind tunnels
now available to the author are of no use fourmaking measurements at
sufficiently high Reynolds numbers, because the transition is prematurely

~.
31nthis figure, the.c~ves L and T ~epresent--tiedrag of a -

flat plate when the boundary layer is entirely laminar and entirely
turbulent, respectively. The curves NV and””NF representthe drag
of airfoil NACA 0009 measured in the NACA Variable-Dens<tyWind Tunnel
and NACA Full-Scale Wind Tunnel, respectively. .-..

41n this figure G and p are the total and static pressures in
the wake, respectively, arid Go is the total--pressureoutside the wake,

all being.measured from the static pressure 01 the undisturbed stream. *
y is the distance across the wake, and t is’the chord-of the model.

#
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.

inducedby the turbulence of the stream (see paragraphs 27to 29). It ‘
seems urgent to build a special wind tunnel of low turbulence level.
For the present, however, it is simplest.to rely upon e~eriments in
actual flight. Such a hope of the author was fortunately realized by
the specially planned flight experiment, which was performed at the
Navy Aeronautical Technical hsenal (ref. 19)..

16. The airplane used for the experiment was a biplane; two Tortions
of the lower wing, each of 1.1 m span, were covered with the airfoil to
be tested. The test portions were of chord 2.4 m, made of Japanese Hinoki,
highly polished, and fitted with a partition fence of small height.at
both ends. Two test portions were placed symmetrically, pressure distri-
bution and wake measurements being performed on the starboard portion,
while the boundary layer was observed on the port portion. The airfoil
section was not one of the most appropriate desi~ now considered, because
it was required to put it on the original section of the airplane, and,
moreover, to determine the section before completion of the final design

-.

calculation. It has the following characteristics:
.

Mean camber’ltie: M = 0.0667x(1 - X)(I - x+x2), f =0.0125

Thiclmess distribution: e = 0.12, m = 0.45, h = 0.%, dl = 1.60

The camber ltie is similar to Do of paragraph 9, but there exists a

slight lack of uniformity of G in the neighborhood of leading and
trailing edges. The thickness distribution is similar to L of para-
graph 7, but the trailing edge slope is somewhat larger than L.

17. Results of flight experiments are summarized h figure 17
and 18. In figure 17, the section lift coefficient CL, obtained by

titegrating the yressure distribution curve, is shown by a broken line
plotted against the Reynolds number R referred to the flight speed
and chord length, and CL is again shown by a solid line plotted against

the profile drag coefficient cDO determined from the wake measurements.

In figure 18, the measured pressure distribution is shown in comparison
with the theoretical one (two-dimensionalpotential flow) having the
same value of CL. The transition points estimated from the change in

boundary layer velocity profiles are also marked. Generally speaking,
.—

the measured pressure distribution agrees fairly well with the theo-
retical one, although a slight difference appears when CL becomes
large. An adverse pressure gradient is found on the lower surface when
CL is small, thus resulting in the transition point being observed

une~ectedly far forward. Such a discrepancy in pressure distribution””
as compared with the theoretical one seems to be probably due to the
fact that the span of the test portion was not sufficiently large. As

. a result, the profile drag coefficient CDo has the minimum value 0.0042
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at about. CL = 0.26, which is larger than the value CL = 0.18 theo- .

retically estimated on the assumption that the transition occurs far
back on both upper and lower surfaces. Therefore, the observed value
of CDO, although much smaller than that of the conventional airfoils,

.

seems to be still somewhat large when compared with the optimum case.
At any rate, however, no transition was found to occur upstream of the
minimum pressure. It is important to note that such experimental evi-
dence was obtained on an airfoil section in which the minimum pressure
is located further downstream than on the conventional one. This findtig
will give valuable data to establish a basis for des”ignof the laminar-
flow airfoils.

ESTIMATION OF THE DRAG OF IAMINAR-FIOWAIRl?OILS

18. As mentioned previously, the results of f’li.ghtexperiments
seem to support the basis for the design of laminar-flow airfoils,
namely, the possibility of maintaining the boundary layer laminar at
least up to the minimum pressure point. It is interesting, therefore,
to estimate the drag of laminar-flow airfoils by assuming a laminar
boundary layer from the leading edge to the minimum pressure point and
a turbulent boundary layer downstream to the trailtig edge.

—

For the laminar boundary layer, the momentum thickness is given by

J0.44V s 4~2 =
U15 () ‘1 ‘s

With a sufficient approximation (ref. 16), where U1 iS the velocity

outside the boundary layer and s is the distance measured along the
airfoil surface from the forward stagnation point. Writing t for the
chord length and V for the velocity of the undisturbed flow (velocitY -
of flight), and putting

U1 =Uv s = at R=~
v

.
I

.

we have the nondimensional expression
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f ()
ga2 ~*& aa

&da
~ = RUa 0 Ua

where the subscript a refers to the point of mtitium pressure.
Applying then the solution due to Buri (ref. 20) for a turbulent
boundary layer assumed to extend from the minimwn pressure point to
the trailing edge, we have the result

~~5/4U17/~: =0.016~1/4~:d da

where the subscript b refers to the trailing edge. The numerical
values originally given by Buri are slightly modified so as ta agree
with measurements when applied to the tlat plate.

According to Squire and Youmg (ref. 21), the profile drag coeffi-
cient is given by

. where the subscripts u and Z
respectively. The exponent 3.2

(eu+%)bub 3.2

refer to the upper

●

and lower surfaces,
of Ub has been obtainedby assuming

the ratio of displacement and momentum thiclmesses equal to 1.4. But the
ratio seems to exceed 1.4 near the trailtig edge, so we replace 3.2 by
3.4 with a view to improving the accuracy and at the same time to
simplifying the algebra. Etice --.——

‘b 3.4

.[

()

ea 5/4u 17/4 -1/4 ‘b ~a4/5
~ ub

‘Ta + o.o162R
J+]Da

. ...-

●

✎
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we have

CDO = 0.074R
-1/5

[

~R-3/8
) (

+,* 4/5
)]

+ ~R-318 ~ TZ 4/5
.

where
—

If the velocity distribution U1
—

= UV is~calculated-byassuming the

potential flow of an ideal fluid, it is desirable to modify the distri-
bution to take account of the effect of separation hear the trailing
edge. We tentatively modified the distribution of U such that the

(epl)(wp+ (@p) 1/4 at thetrailing edge forBuri parameter I’=

the case when the boundary layer is-assumed turbulent from the leading
edge, namely

r
of

0,0081 dU2=— . ‘+dcs
●

ub6 ‘Ubo i
shall not become smaller than -0.06. In alpost all the cases, values
of Ub thus modified are found in the range between 0.95 and 1.00. .

19. Applying this method of calculation, the profile drag coeffi-
cient C~ is estimated first for a series of-symmetrical a~foils s@

at zero angle of attack. The series consists of the six symmetrical
airfoils, 1, J, K, L, M, N, as given in paragraph 7 iiiidthe NACA con-

ventional airfoil. ValUes Of. CDO at R = 2 X 107 for three different

thicknesses (maximum thickness in terms of chord e = 0.10, 0.15, 0.20)
are shown b figure 19 plotted against the position of minimum pressure.

cDO
-.

seems to decrease almost linearly as the minimum pressure is shifted .

backward, the most ideal airfoil I giving a value about half of that of
the NACA conventional airfoil. If it is desired to realize a profile
drag of two-thirds of the conventional airfoil, it will be required to
use the symmetrical airfoil L with the maximum thickness located at

-.

45 percent chord from the leading edge. - .

.
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Effect of camber is relatively small. If, for instance, the
center ltne of the symmetrical airfoil K with e = 0.15 is curved
introthe camber line D5 with f = 0.02 (see paragraph 9), the estim-

ated increase in profile drag at the optimum angle of attack is only
0.0001. For f = 0.04, it is 0.0003.

Finally, we compare the laminar-flow airfoil with the most exten- ‘ ‘“ ““’
sively used airfoil, NACA 2301.2,for which the leading-edge radius is -
O.OIX, and the optimum lift coefficient corresponding to the minimum.
profile drag coefficient is about 0.15. If we consider the symmetrical
airfoil section K (h = 0.56) combined with the camber Iine D5, it is

necessarX to use the thicbess e = 0.15 in order to obtain the same
magnitude of leading-edge radius, and the camber f = 0“:Cl12in order to
realize the optimum lift coefficient 0.15.5 Therefore we construct an
airfoil by applying the symmetrical form K with e = 0.15 normal to
the chord around the camber line D5 with f = 0.012. We call it
D+ - 1215. The angle of attack corresponding to CL = 0.15 is 1.9

forNACA 2301.2and O.@” for D* - 1215. The pressure distribution for
that condition is shown h figure 20.

We then estimate CDO for the two airfoils by the method explained

previously. The results are shown by broken lines in figure 21. In
order to check the results, measured values taken from various sources
for the two airfoils and similar airfoils are also plotted in the same
figure by different marks. The mark o refers b“ the value obtained
by flight experiments on a smooth surface, and ● refers to that
obtained by wind tunnel experiments where the stream turbQence has no , --–
effect on transition. The mark + -refers to the flight experiment”on
a rough surface, while X refers to the wind tunnel experiment where-
the stream turbulence causes the transition to occur prematurely. There-
fore, only o and ● are adequte for our present purpose. Drawing
cuzwes through these points and extrapolating to higher Reynolds nuribers, ‘
we find that the result agrees fairly well with the estimated values.
Therefore, we may consider that the method of estimating ho is suffi-

ciently accurate at the Reynolds numbers corresyondtig to actual flight

~he calculation developed in paragraphs 8 to 11 refers to the poten-
tial flow of an.ideal fluid, so that it gives the slope of lift curve
dCL

.-

—= 2fi. In real fluids, however, the slope of lift curve amounts to
da
only 8Q to 90 percent of the theoretical value. If we take this effect , __
into account, we have to increase the necessary amount of f by 10 to
20 percent in order to realize the given lift coefficient. However, .

such a slight change in the value of f will scarcely affect the esti-
mation of CDO.
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conditions. Comparison of two airfoils, landnar-flow and conventional,
also suggests the possibility of @ percent reduction In profile drag
by using a fairly practical laminar-flow airfoil.

.

.

.
CONSIDERATION OF THE AIRFOIL WITH UNIFO~ DISTRIBUTION OF PRESSURE

20. The fact that, so far as flight experiments with smooth wings
are concerned, the boundary layer transition occurs only in the region
of rising pressure, not only warrants the principle of designing the
laminar-flow airfoil by shifting the minimmnpressure backward, but
also suggests the possibility of delaying the transition by using an
airfoil with uniform distribution of pressure. Therefore, in para.
“graphs21 to 23, the shape of such a symmetr3.calairfoil is determined
by a method similar to that used for designing the camber line of laminar-
flow airfoils, and the airfoil was examined by wind tunnel experiments.
In paragraphs 24 to 26, a calculation is made to inquire about the method
of sucking away the boundary layer over the region of rising pressure in
such a way that the boundary layer velocity profile shall remain the same
as that for the”point of minimum pressure.

21. Consider the symmetrical airfoil set at zero angle of attack.
According to the formula of paragraph 3, the pressure distribution is
given by

..

1’E$nbna2
where p is the pressure acting on the airfoil surface, measured from
the static pressure of the undisturbed stream, q is the dynamic pres-

sure of the undisturbed stream, x = ~ (1 + cos ~) is the coordinate

along the chord, and the
the form

half-thickness of the airfoil is e~ressed in

-.
w

T=
T

bn sinn~
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. If the thickness is sufficiently small, the square

.
dT cos n~
—= -2 ~ nbn _
dx 1 sin 5

may be neglected, sd that the condition of uniform
sure is satisfied by putting all the coefficients

equal to zero, namely, by an elliptic section. In

21

of

distribution of pres-
bn> other than bl,

order to take “th”e
thickness into account approxbatelyj we stistitute the value of a!r/dx
for the elliptic section into the denominator of the expression for p/q.
Then, writing e for the maximum thickness in terms of the chord, we
get

sin2E + e2cos2~

hence

t

1/2
where B is the constant value of (1 - P/q) ●

We have therefore*
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where

B=U-;

{

2ku C08-le +

Cos E - Cos E’

KTzF log ‘1+‘)(”- ,2. + e-)~
C7F)J(1-u) (l+k2u+el

U= COSE =2X-1 k “=G*-

—

Upon integrating we get
J.. —-— —- ---— k.

●

T=

{

~ k cos-le -

}

*~a-”*
—.

.

The integral is evaluated by a numerical method, and the value of the

constant B determined from the condition that T = & when u . 0.

The numerical results for three values of e are given in table 8, T
and dT/dx being expressed in terms of those for the elliptic section. .

.
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The shapes of the airfoils are shown in figure 22. The shape resembles
an elliptic section, although it is somewhat fuller at the ends. It Will
also be seen that the constant B, as shown in the following ta%le, is

slightly smaller than 1 + e, the maximum value of (1 - p/q)1/2 for the

elliptic section. Since the values of (~/dx) ~ (-euli=-) are not far

different from 1, it seems to be sufficiently accurate to substitute
the value of dI/dx for the elliptic section into the denominator
ofl- P/q*

me B

0.1 1.097
.2 1.188
.3 1.273

22. The uniform distribution of pressure requires, however, an
infinite pressure gradient at Imth leading and trailing edges. In order
to see to what degree such a sharp pressure gradient may be realized in “-
actual fluids, measurements were made on a model of the airfoil.section
with uniform distribution of pressure with e = 0.1 (we call it U.P. 0010)
in the 1.5 m wtid tunnel of the Aeronautical Research Institute. The
model was -de of laminated mahogany, of 0.8 m span, of 0.8 m chord, and
fitted with end plates 1.3 mX 0.6 m. Measurements of pressure distribu-
tion, wake traverse and boundary layer transition were similar to those
already mentioned i.nparagraphs 12 to 14.

The pressure distribution along the chord is shown in figure 23
for three values of R, the Reynolds number referred to chord length.
The obsened value is somewhat high compared to the theoretical

Pvalue - = -0.203, the discrepancy probably being due to the excessive
q

size of the model in proportion to that of the wind tunnel. At any rate,
however, the pressure distribution is nearly uniform. The lack of uni-
formity exists at both edges due to the impossibility of realizing the
infinite pressure gradient. The boundary layer separates near the
trailing edge, but the effect of separation becomes small as the Reyaolds
number increases. This scale effect seems to be of the same nature as ‘---
that responsible for the sudden drop in sphere drag; the boundary layer
separates in a laminar state when the Reynolds nmber is low, while it
becomes turbulent before separation when the Reynolds nuuber is high,
thus being able to proceed against a larger pressure gradient. This is
also seen from the measurements in the wake, where the indentation-of the
curve of total pressure distribution is shallow and wide for low Reynolds
nuribers,while it becomes deep and narrow as the Reynolds number increases.
As a result, the profile drag coefficient c% decreases considerably
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as the Reynolds number increases, as shown in figure
turbulence was found very near to the trailing edgel
of x = 0.9 In the range of measurements. Measured

NACA TM 1351

24. Transition to
occurring downstream
values of the drag

of the model when a piano wire of 0.5 mm diameter was placed at x = 0.8
and x = 0.9, respectively, are also plotted in the same figure. The .
drop in drag occurs at a lower value of the Reynolds n~ber fien the .
surface is roughened by the wire.

23. The profile drag coefficient of the airfoil U.P. 0010 is shown

below in comparison with other symmetrical airfoils at R = 2.2 x 106:

NACA 0010 CD()= 0.0064 (fig. 13)
L.B. 24 O.00* (fig. 13)
U.P. Oom 0.0059
U.P. 0010, a wire at x = 0.9 0.0044

.
All the airfoils are of 10 percent thickness. NACA 0010 is a conventional
airfoil, and L.B. 24 is a laminar-flow airfoil with far back minimum
pressure. The drag of U.P. 0010 is between that of these two atifoils,
the drag when a wire is placed being nearly the mean of the two. This
result seems to be interesting in that the drag of an atrfoil with a
blunt tail is smaller than commonly considered.

The airfoil with uniform distribution of pressure will also probably
be favorable when used at high subsonic speeds. Even if the shock wave
occurs at high subsonic speeds, the increase in drag will remain small
when the boun&iry layer does not separate. This expectation was really
verified by the e~eriment due to Kawada and Kawamura (ref. 22), the
drag of the airfoil U.F. 0010 being smaller at high Mach numbers as
compared with other airfoils.

24. From the fact that the boundary layer transition occurs only in
the region of rising pressure, we may also expect suction of the boundary
layer to delay transition. For example, if the boundary layer is sucked
inte a slot, there is a well-known sink effect (ref. 23) which relieves
the adverse pressure gradient somewhat upstream of the slot. We may con-
sider an alternative possibility. That is, we assume that the boundary
layer is laminar in the region of falling pressure, and that it remains
laminar also in the region of rising pressure provided that the bounda~
layer profile is the same as that at the minimum pressure point. We
then ask what suction arrangement must be applied in order to realize
such a condition.

25. We denote by s the coordinate measured along the surface,
y perpendicular to the surface, 8 the boundary layer thiclmess, u
the velocity in the boundary layer, U1 the velocity outside the boundary

.

i
;
1

.

r
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dp
layer, ~ =

(
-@l~ dul/ds) the pressure gradient, and TO = -U(bu/ay)Y4

. the skin friction at the surface. Assuming the surface (y = O) Is made
porous, through which the fluid is sucked with the velocity c, we have
the equation of continuity

(a)

and the equation of momentum

where w is the velocity of fluid entering the boundary layer through
Y=~* The equation of motion reduces to

.

.

uau dul

(a)

a%—+v—‘c~y=o = ‘1 as
? y=o

for y= O.

(c)

Now, the velocity profile in the boundary layer maybe approximated
by the Pohlhausen polynomial

(d)

when neither pressme gradient nor suction exists. For this profile we
have .-

‘1
‘o =2p7 (e)

.

.

441
pulw = —

74 ‘o
(f)
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TO stiplify the calculation, we assume >hst the exPressi~s (d)~ (e)~
and (f) still hold when both pressure gradient and suction exist. Then

we have from (b)

~=630 V 104 5 %——. —.—
ds 37 u~b 367ul dS

Integrating we have

208
where m = — and So is the initial position

367’
the minimwn pressure point in the present c“ase.

. 1841 %
c —— 5

3670 ds

.

(6) “
-.

(h)

of suction, which is

We &ve also from (a)

(i)

—

If we substitute (d) and (i) into tith sides of the equation (c) however,
the left and right sides become

~
1.003ul(du1/ds) and ul(dul/ds , respec-

tively. This contradiction is evidently”due to the c~ude’assumptionof
using (f) In spite of the presence of press—me gradie=t and suction, but
we may overlook the error because it is small.

26. We apply the calculation to the symmetrical lam5nar-flow air-
foil of 10 percent maximum thickness, L.B, 24, set at zero angle of
attack. The velocity distribution ul/v calculated from the potential—
flow of ideal fluids is Used,b the maximum velocity (minimum pressure)
being located at 64 percent of the chord from the leading edge (so = O.6x).

Applying a distributed suction downstream of the minimum press~e point
—

so as to maintain the velocity profile in the boundary layer the same as
at this point, we have the boundary layer thickness b and the required

61t is assumed that the velocity distribution is not affectedly
the suction. Theoretically u~ should be O at the fiailing edge, but
the distribution was somewhat modified so as to give ~~ =.0.85v there.

The effects of these assumptions appear to be too small to affect the
result materially.

.

.

E
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suction velocity c as shown in figure 25. It is to be noted that s
is measured along the surface from the leading edge, and R is the
Reynolds number based on the chord length t and the velocity of the
undisturbed stream V. Integrating the area under the curve of c, we

have the total amount of suction 1.3vfR yer unit span of the two sur-

faces. If we assume span = 35m, t = 5m, V = 200 ~s, v = 0.15 CmS/s,

the total anmunt of suction amounts to 7.6m3/s, which will require an

exit area of only 0.028 m2 when discharged w“iththe velocity eqtil to V
htegration of TO gives the drag coefficient CD()= 0.0005. This value

may be compared with Cm = 0.0003 for the flat plate with laminar

boundary layer, cm = 0.0044 for the flat plate with turbulent bouudary

layer, and CDO = 0.0025 for L.B. 24 without suction. If the thickness

of the airfoil is doubled (20 percent chord), then the ammnt of suction
will be nearly doubled; the drag is however almost unchanged.

It should be noticed again that the calculation is based on the
assunrptionthat no transition occurs if the velocity profile in the
boundary layer maintains the form at the mtiimum pressure. It is the
purpose of the calculation to show that extraordinarily low profile drag
may be expected with a relatively small amount of suction uuder such a
condition.

PREMATURE TRANST1’IONOF BOUNDARY LAYER - EFFECT OF STREAMTURBULENCE

.-

9

.

27. Although the transition of the boundary layer occurs only down-
. stream of the minimum pressure, so far as flight experiments on smooth

airfoil surfaces are concerned, there sre many examples of wtid tunnel
experiments in which the transition moves upstream of the minimum pres-
sure. This seems to be due to the premature transition caused by the
turbulence in the wind tunnel stream. For example, the transition on
the airfoil L.B. 24 was found oniy downstream of the minhmm pressure
in the range of Reynolds numbers covered by the author’s w3nd tunnel

experiments (the Reynolds nuntberbased on chord length up to 3 ‘X106;
see paragraphs U to 14); as a result very low values of the profile drag
coefficient CDO were observed. The same airfoil, however, when tested

with a larger model of 2 m chord in the 2.5 mwind.tunnel of Kawasaki
Aircraft Company, Gihu, gave the result as shown in figure 26, in which

CDO increases considerably when the Reynolds nuniberexceeds 5 X 106

(refs. 24 and 25). There is reason to believe that the increase in drag
is due to the effect of stream turbulence. The boundary layer observa- ‘“
tion at the Kawasaki wtid tunnel shows that the transition is found at

n percent chord (x = 0.5) for the Reynolds number 6 x 106 and moves
..
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. .

further forward as the Reynolds number increases. The boundary layer
-.

.

velocity

(5* and
boundary
pressure
at least

28.
that the

profile observed at-transition has a form factor ~ = 2.6—
f3 are the displacement and nnmentum thicknesses of the c

layer), which is very near to the value for the case of zero
gradient. This result seems to suggest that the transition is
not correlated with the l.aminarseparation (ref. 1).

In order to verify this conjecture, it is desirable to show
transition in the boundary layer along a flat plate occurs

under the same condition, because that transition may ‘beconsidered to
be independent of the laminar separation. Unfortunately, however, no
flat plate was measured in the Kawasaki wind tunnel. Therefore we pro-
ceed in a somewhat indirect way. We assume that the degree of stream
turbulence is represented by the conventional critical Reynolds number
of the sphere, ~, and the condition of transition due to turbulence

represented by the local Reynolds number, ~ = !$., at tr~sition on a

flat plate, where U1 is the velocity outside the bouudary layer and
13 is the momentum thickness of the boundary layer. It is generally
accepted that the turbulence in the wind tunnel stream will give a
fluctuation of pressure gradient, as a “resultof which an instantaneous
and intermittent separation will occur. Such an instantaneous and inter-
mittent separation, however, does not necessarily lead to the transition
into turbulence; for the transition really to occur, it seems probably
necessary that the Reynolds number ~ which represmts the ratio of

inertia pu12 to viscous stress pvul/e exceed a certain critical value.

It is also expected that the critical value depends on the degree of tur-
bulence; it must increase as ~ increases. This isreally shown by
the experimental data hitherto published, which are given in the following
table and also by white circles (o) in figure 27. The available data are
scanty, especially because the.experiment on a flat plate is very diffi-
cult. It was necessary for the author to perform a new experiment (ref. 30)
with a view to adding one point in the range of high ~.

r%1.4-OX 105

2.75x 105

2.20X 105

3.66 x ~05

%

0.21X 103

.-p x 103

.42x 103
l.o~x 103

Wind Tunnel Reference

National Bureau of Standards 26

National Bureau of Standards 26

N.P.L. Compressed Air Tunnel 27, 28
Aero. Res. Inst. 1.5m Tunnel 299 30

●
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29. Now, we calculate
L.B. 24 tested in the

29

the value of ~ at transition of the air-
Kawasaki wind tunnel, and correlate it with

the critical Reynolds nunher Rc! of that tunnei. We analyze stiilarly

the other available data, and summarize the result in the following
table. ‘I’hevalues of the form factor b*/e, not shown, were all found
in the range from2.1 to 2.7. We then plot the data also in figure 27
by black circles (.). The black circles are seen to deftie a single
curve together with the white circles already mentioned. This result
seems to support the supposition that the transition under consideration
is mainly caused by the stream turbulence, but not correlated with the
laminar separation.

1-

% ,%
Model Wtid Tunnel

1.85x 105 0.41X 103 Symmetrical .airfoilN.P.L. 7ft

2.10 x 105 .x x 103 Airship model M.I.T. &t

3.9 x 105 .95x 103 Airfoil N-22 NACA Full-Scale

3.65 X 1.o51.08x 103 Airfoil L.B. 24 Kawasaki 2.5m

In reference 12 (the third line in the preceding table)

Reference

31, 32

33, 34

E, 35

24, 25

, the same

.

airfoil was examtied both by the full-scale ~ind t~el and by the flight
tests. We calculate the form factor b*/f3 from these tests and plot the
values against s/t in figure 28, where t is the chord length and s
is the length measured along the surface from the leading edge. The
value of b*/e at transition is 2.6 in the wind tunnel, while it reaches
as high as 3.1 and drops sharply in the flight test. The minimum pres-

sure is located at ~ = 0.18, and the laminar separation calculated from

the measured distribution of pressure at ~= 0.36. This example is very

interesting because the cause of transition is quite different in the two
cases (namely, it is due to the stream turbulence in the wind tunnel,
while it is related to laminar separation h the flight test), although
the positions of transition are almost the same.

PREMATURE TZRANSI!TIONOF BOUNDARY LAYER - EFFICT OF SURFACE ROU3HNESS

30. Up to this ~int, we have only considered the case when the sur-
face of the airfoil is smoth. If the surface is rough, however, there
is a possibility that the transition may also be caused prematurely by
surface roughness. So, it is important in practice to estimate the
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approximate order of magnitude of the permissible ro&hness in the lami-
nar boundary layer. Nothing has been kno~ concerning this problem,
except a mere conjecture or fragmentary data. Schiller (ref. 36) sug-
gested that a local separation occurs and hence leads”to transition
when the Reynolds nunher kuk/V exceeds a “certaincritical value Rcrit,

where k is the height of projection and ““Uk is th=velocity at the

top of projection. The exact value of Rcrit Is not”known, but it is
not likely to differ much”from the critical value of the Reynolds number,
above which vortices are shed from the obstacle of the same shape as that
of the projection placed in a uniform stream; The experimental result
due to Wieselsberger (ref. 37) shows that such a critical Reynolds number
is roughly z for a circular cylinder. Assuming that the height of pro-
jection k is small, and that the presenc~ of the projection in no way
alters the character of the flow, we have t-heshearing stress at the

SUrfaCe .TO= @(Uk/k). 17-.Using the so-called friction velocity v* = TO p

instead of ~, we have then %l’=w- ‘“The permissible roughness

is therefore given by kv*/~.= [~t, or, with Rcrit = 50, kV*/~ = 7.

On the other hand, according to Nikuradse’s experiments on roughened

pipes (ref. 38), the critical Reynolds number is
kv*
~: k, above which

the roughness projections disturb the laminar sublayer of the turbulent
boundary layer and hence increase the pressure drop. It appears there-
fore that the permissible roughness is smaller In the turbulent boundary
layer as compared with the laminar boundary layer. This is confined by
a British flight experiment (ref. 39) on the airfoil section of 10 feet

chord (Reynoldsnumber 1.8 X 107), because the effect of camouflage paint
of 0.001 inch thickness increased the drag by about 6 percent without
moving the transition forward. At any rate, however, such a estimate is
nothing but mere conjecture. With a view to making the estimate more
definite, we performed wind tunnel e~eriments although of small scale,
of quantitative character (paragraphs31 to 72\.

.-—

31. A polished aluminum plate, 80 cm”lorigj63 crn~~ie, and 3 mm thick,
was held horizontally in the 1.5 m wind tunnel of the Aeronautical Research
Institute. So that the flow at entry would riotbe dist~bed, the leading
edge of the plate WRS rounded, and the plate “~ightly t~ted so that the
forward stagnation pointwas on the same stiface as that.where the observa-
tion was made. The tilting, however, was so slight that the static pres-
sure was observed to be practically uniform along the pl~te. The plate
was roughened by a wire, which was stretched across the flow, in contact
with the plate. The diameters k of the wire were 0.25$ 0.4, and 0.7mm,
respectively, and the distances x’ of the wire from the leading edge were
15, 30, 45, and 60 cm, respectively. When the wind speed V was low, the
boundary layer was Iaminar all along the plate, butfrom a certati speed
upward, the transition to turbulent flow was 6&erved at that point where

.

1
n
1

.

.

—

.

.
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the wire was placed. Transition was detected by a sudden change in the
value of the total pressure G* in terms of the dynamic pressure q of
the undisturbed stream, G* being indicated by a small pitot tube with
a flattened mouth of 1 mm external width and 0.3 mm width, which was
placed in contact with the plate at a point P cm behind the leading
edge. A sample record of measurements for k . 0.4 mm is shown in
figure 29.

When a flat plate is placed along a uniform stream of velocity V,
the Blasius solution (ref. 40) of the laminar boundary layer equation
gives

-3/4
V* = O.576v&~

for a point of
critical value

given by

distance x from the leading edge. Writing K for the
of kv*/V, the permissible height of projection k is

-3/4

()
0.576$=KV+

.

We determine V from the wind speed corres ndtig to the kink of the

rcurve as shown h figure 29, plot 0.576(k x) in a logarithmic scale
against Vx/Y, and draw a straight line of the slope -3/4 through the
points (fig. 30). We thus obtain K . 13, which is far greater than
the value K . 7 estimated previously.

32. Similar measurements were also perfomned on an airfoil section
L.B. 24. The model was of 0.8 m span, of 1.2 mchord, fitted with end
plates 1.3 mX 0.6 m, and set at zero angle of attack in the same wind
tunnel. Wires of various diameters (k = 0.25, 0.4, 0.71mn) were attached
parallel to the span, in contact with the surface, at 10 percent of the
chord from the leading
sudden change in total
flattened mouth of 2.7
placed in contact with
leading edge. Results

R=~, and t is the

edge (x = 0.1). Transition was detected by the
pressure as indicated by a pitot tube with a
mn external width and 0.9 mm depth, which was
the surface at ~ percent of the chord from the
of measurements are shown in figure.31, where

chord length.

The friction velocity may be generally expressed in the form

v+ = AVR-1~4
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where A is a function of s/t (s is the length measured along the
surface from the forward stagnation point). We can calculate A by
applying either the Pohlhausen approximate solution (ref. 41) or the
simplified method due to the author (refs. 15 and 16). The permissible
height of projection is then determined by

Applying the Pohlhausen method to the theoretically calculated
distribution of pressure, we get the values of function A, as shown
in figure 32. Since A is 1.23 at the position of wire (x = 0.1),
the value 1.23(k/t) is plotted in a logarithmic scale against R in
figure 33, R being the Reynolds nunibercorresponding to the kink of
the curve as given in figure 31. It will be seen that although the
measured points are on a straight line of the slope -3/4, they give
K = 15, which is somewhat higher than the value found for the flat plate.

33. Nowwe apply the preceding result to the fragmentary data
hitherto known in order to check the adequacy of the estimate. First,
we examine the results of wind tunnel experiment on a symmetrical
laminar-flow airfoil L.B: 27,7 on which various projections are attached
at 3 percent of the chord from the leading edge (x = 0.03). The nmdel
was of 0.8 m span, of 1.2 m chord, and set at zero angle of attack.
The profile drag was measured by the method similar to that for L.B. 24
(see paragraphs W to 13). The results are shown h figure 34, from
which we find that the rtiber tape of 0.07 mm thichess gives no effect
over the range of Reynolds numbers R covered by the experiment, while
the piano wire of 0.5 mm diameter gfves a completely turbulent friction.
The effect of the wire of 0.25 mm diameter begins to appear at

R= 1.3 x 106. Inserting the values’ k = 0.25mm, t = 1.2 m and

A = 1.95 in the formula A $ = KR-3/4, we get K = 15.5, which is in

good a~eement with the result iu paragraph 32. The value A = 1.95
was read from figure 32, since the leading edge portion of L.B. 27
almost coincides with that of L.B. 24. Profile drag coefficients of
both airfoils are also the same over the range of Reynolds numbers
examined.

34. In connection tith the determination of boundary layer transi-
tion on airfoils in the NACA full-scale wind tunnel (ref. 42), an aux-
iliary measurement has been reported, in which the effect was examined’

.

.

7L.B. 27.has a maximum thiclmess of 10 percent of the chord at
.

@ percent of the chord from the leading edge. See figure 5 of paragraph 6.
.
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. of rubber tapes attached at 5 percent of the chord (x = 0.05) from the
leading edge of the model. The airfoil section was NACA 001-2,the chord

. was ~ inches, and the Reynolds number R was 4.18x 106. No effect
was found when the tape was 0.003 inch thick, some effect began to
appear when it was 0.006 inch thick, and the transition moved right to
that position where the tape of 0.009 inch thickness was attached.
Assum~ A = 1.6 and K = 15, we esthate from the preceding formula
the value 0.007 inch for the permissible thickness, which seems to agree
well with the observation.

If we further ass&e that the value A = 1.6 is also applicable
to the case of the British flight experiment mentioned in paragraph 30t
we find 0.004 inch for the critical height for transition with

t = 10 feet, R = 1.8 X 107, and K = 15. On the other hand, we esti-

mate the permissible limit in turbulent boundary layer by %=4,
v

- ..t.4 ,.% -... -b.. .-:44----- *- -LI.T. -P——
WLL.LL-U luay u’= WL-.LLJUCU Jd.1 Uuc J.UA-JU

s

.

.

r2V4%= ‘—-cf U1 R .—

by the relation V*2 = $ cfu12, where U1 is the local wind speed and —-

cf is the coefficient of local skin friction. If we assume U1 = 1.2V ,

and cf = 0.003 (which is equal to the coefficient of mean skin friction

for a flat plate at R = 1.8 x 107), we obtati 0.0@6 inch for the per-
missible roughness thichess. Since the thickness of the camouflage
patit is.reported to be about 0.001 inch, it may be concluded that the
paint ticreases only the friction in turbulent boundary layer, without
affecting, however, the transition to turbulent flow. This iS in good
agreement with the experimental results.
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APPENDIX

TRANSIZCIONCAUSED BY IAMINAR

35. As is well-known, the phenomenon of

SEPARATION

sudden decrease in drag of

‘d (V is thea sphere at a certain value of the Reynolds number R = ~

speed of undisturbed stream and d is the diameter of sphere) is
explained by supposing that the bomdary layer separates while it is
laminar when R Is low, but it separates after transition to turbulence
when R is high, thus resulting in diminishing the i30-C811eddead water
region. Probably the transformation from laminar separation to turbulent
separation may proceed as follows:

When the I.aminarboundary layer separates from the surface, the
detached layer remains also laminar at first, but it is so unstable that
it becomes turbulent at a short distance. This transition from l~tiar
to turbulent flow is considered to occur when the local Reynolds number
based on the width of the detached layer and the velocity outside the
layer exceeds a certain value, so that the transition moves upstream
toward the separation point as R increases. When the transition
approaches sufficiently near the separation point, it becomes possible
for the detached layer to come back again to the downstream surface,
because the turbulence produced will.drive the flow forward. The layer
reattaches to the surface as a turbulent layer, and accordingly the drag
coefficient begins to decrease. The distance between the separation and

1

the first turbulent boundary layer decreases as R ticreases, and finally
the fully developed turbulent boundary layer commences just downstream
of the separation point. The drag coefficient then cea~es to decrease.

.

36. Now, in order that the separated layer reattach to the surface,
Ule

it seems necessary for the local Reynolds number ~ = ~ at separation

to exceed a certain critical value, where U1 is the velocity outside

the boundary layer, and @ is the momentum thiclmess of the boundary
layer. This may be explained as follows: According tothe laminar
boundary layer theory, the separation occurs when the quantity

.

.

exceeds a certain value, suggesting that the pressure rise (dp/ds)@
becomes too large in proportion to the sheartig stress at the sur-

V

face pv(u~e). Assuming analogically that the separated layer leaves

.
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the surface when the pressure rise becomes too large in proportion to

the ~ment~ pu12, we then find that ~ at the separation Petit mmt

exceed a certain critical value h order that the separated layer
reattach to the surface.

37. In order ta determine the critical value of ~, we consider

in detail the condition where the coefficient of sphere drag begins to
decrease. This condition corresponds to the point B of the curve of
figure 35, which represents an idealized vsriation of the drag coeffi-

[
Cient CD = &ag ~ (m) (&h! or the pressure difference coeffi- .

rcient Ap/q = difference of pressures at the forward sta@ation point—
L

and the petit corresponding to the central angle ( /)1157.50 : pvz 2 with

the Reynolds number R. Within the range AB, the pressure distribution
around the sphere is approximately independent of R; the tmical example
may be found from the experiments due to Fage (ref. 43). Fortunately,
the boundary layer calculation has also been performed for that distri-
bution of pressure by Tomotika and Imai (ref. 44), so that the local
Reynolds number ~ is given by

%’ 0.40G

.
at the separation point. Although the calculation has originally been

made for a particular Reynolds number, R = 1.57x 105, the preceding
. relation may be applied for any value of R in the range of AB. Putting

thq value of R at B, and writtig

%3= &k@
crit

we have ~crit as the critical value of ~ above which the separated

laminar layer reattaches to the surface. Conventionally the Reynolds
nuniber ~ corresponding to ~ . 0.3 (or Ap/q = 1.22) has been used,

instead of RB, for representing the degree of stream turbulence, but it

is not so difficult to estimate the value of RB from the measured curve
of CD (or Ap/q) against R. For example, we have from the experiments

of towing spheres in the free atmosphere (ref. 35)

. .

‘B ‘ 3.6x105 %=3.85xb5 “~ = 246
crit

.
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Since these values refer
seen that ~crit = 240

to the case of
represents the

NACA

very low turbulence, it
highest possible value.

TM 1351

will be
It i6

RB
also to be noted that ~ = O.gl+ in this example and that almost the

%
same value has been obtained by the author’s experiments on spheres of
various diameters (ref. 29).

38. If the stream turbulence is not low so that ~ is less than

3.85x 105, then ~crit willbe less than 240.

to be constant, we c% estimate the corresponding

% r ‘c= 240 —
crit

3.85x 105

On the other hand,.we can also estimate the value

Assuming the ratio RB/I@

value by

‘f ~crlt directly

from the boundary layer measurauents. The results of the analysis for a
sphere as well as cticukr and elliptic cylinders are summarized in the
following table, where ~crit iS the critical value ~ est~ted

from ~ by the preceding formula, ~ is the value of ~ observed
sep

at the separation point when the boundary layer really separates while
it is lamtiar, and ~tims is the value of ~ observed at the calcu. a

lated laminar separation point when the boundary layer separates after
transition. The fact that ~crit lies b&ween ~ and %tr=8sep .

seems to suggest the adequacy of the preceding consideration.

Body % %crit %Sep Wtrans Reference

Sphere 2.5 x 105 1$X3 160 220 43
Circular cyltider 1.5X 105 1~ lb 225 45
Elliptical cyllnder 2.7x 105 200 160 400 46, 47

39. He now proceed to apply our result to interpreting the effect of
Reynolds number on maximum lift of airfoils. For the angle of attack
near the stall, the fzow separates shortly downstream of the leading edge
while the boundary layer is laminar. lf the flow fails to reattach to
the surface as a turbulent layer, the maximum lift coefficient

.
c~x of

. .
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the airfoil will be almost independent of the Reynolds
the separation point, shdlar to the case of a sphere,
the form

37

number R. At
the relation of

holds, where R = ‘~ is the Reynolds nuniberreferred to chord length t,8

and k is a constant depending on the shape of airfoil and the value of
c~x . If R is kW 80 that ~ is less than the critical value ~crit

‘hen C%x
will be independent of R. Assuming the same value of

“%3 for the sphere as for the airfoil, we obtain
crit

R
0.16

=—RB
k2

for the Reynolds number above which C~x begins to ticrease with the

Reynolds number. Therefore, the ratio of the Reynolds pumber correspondtig
to a certain value of C% of an airfoil and the critical Reynolds

number of sphere in the same stream, RB or Rc, becomes independent of
the stream turbulence. Denoting the values for a reference tunnel with
asterisk, we have

which h turn means that the ratio of Reynolds numbers corresponding to

a certahval”eof C%ax
is equal to the ratio of critical Reynolds

numbers of a sphere. This is useful for comparing the values of C%ax
obtained in two different wind tunnels. Considering the reference condi-
tion to be the free flight h the atmosphere, we find

81t is to be noted that R is referred to t, while RB and ~

are referred to d.

.
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as the free flight Reynolds number which will give the same value of

%lax

.
as that observed in a wind tunnel. This is just what is called

the effective Reynolds number. Strictly ~peaking, such an argument as
mentioned before should apply only to the Reynolds num%ers near the

.

critical value, but there are many experimental evidences showing the
usefulness of the concept of effective Reynolds number for most practi-
cal purposes, as far as the commonly used airfoils and range of Reynolds
nuuibersof both wtid tunnel and free flight are concerned.

40. Finally, we consider a more-quantitative exagple to @ow the
adequacy of the preceding argument. k figure 36,

C%lax
for various

NACA symmetrical airfoils are plotted against the effective Reynolds
number R*, the experimental data being taken from the results of the
NACA variable-densitywind tunnel (ref% 48). As already mentioned, up ‘
to a certain value of R*, Cbx is almost independent of R*, This

corresponds to the condition in which the laminar separation just behind
the leading edge fails to reattach to the surface, resulting in a con-
siderable dead water region above the airfoil surface. The value of
c~ is approxhately 0.9, irrespective of the thickness; it is almost

equal to the value for a flat plate of vanishing thickness. Theory of
discontinuousflow, when applied to the flat plate, seems to give a lift
coefficient close to 0.9 (ref. 49). We idealize, therefore, the experi-
mental curve as shown by dotted lines in figure 36. Then, the point
where the dotted line meets the line C

%8X
= 0.9 will be considered to—.

correspond to ~crit = 24o. In order to determine this petit, we calcu-

late the value of ~/@ at the laminar separation point for a lift
coefficient CL = 0.9, and the value of R which gives ~ = 240. We
first calculate the pressure distribution by the formula of paragraph 3
for the two-dimensionalpotential flow around the airfoil section.
Although the formula may be applied to any arbitrary airfoil section,
we have determined the pressure distribution only for the airfoil

T fVj(5 -4x)= 0.287e x(I.

in order to simplify the calculation, because no great exactitude is
required in the present problem. x is the coordinate along the chord,
x= Oandx= 1 corresponding to the leading and trailing edges,
respectively, T is the half-thickness, and e is the maximum thick-
ness in terms of chord length. The airfoil represented by the preceding
expression coincides with sufficient accuracy with the true NACA symmetri-

cal airfoil except near the trailing edge. “The value of ~/~ at the

laminar separation petit was then determined for the calculated pressure
.

distribution by applying the approximate method due to the author (refs. 15
and 16).
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The critical values R*crit thus calculated are shownby a solid

line in figure 37, while the corresponding values taken from figure 36
are shown by white circles. The agreement is fairly gmd, and especially -
satisfactory when the thickness of the airfoil is small. h general, the
thickness of the boundary layer near the trailing edge increases as CL

increases. ~ CL is further increased, however, a laminar separation

suddenly occurs near the leading edge when the thickness is small, while
the trailing-edge turbulent separation moves a considerable extent for-
ward before the leadtig-edge laminar separation occurs when the thickness
is moderate. Therefore, the assumption of the analysis is more satis-
factorily realized in the case of small thickness, thus bringing the
calculated and observed values in close agreement.

In conclusion, the author wishes to acknowledge his indebtedness
for the assistance given by Messrs. C. Nods, S. Mituisi, I. Shinra,
S. Asaka, R. Hama, andK. Takeda.

Translation by Itiro Tani
University of Tokyo
Tokyo, Japan
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TABLE l.- ORDINATES FOR SYMMETRICAL SECTION. VALUES OF T/e

x

9
.003
.006
.o125
.025
.05
.075
.10
.15
.20
.25
.30
:&5

.45
●5O
● 55
.@
.65
●70
:g

.85

;:;
.

I

o
.0465
.0661
.0962
.1374
.1963
.2414
.2789
● 3394
.3865
.4236
.4923
.4737
.4885
.4972
. moo
.4970
.4871
.4691
.4418
.4o38
.3538
.2$m8
.2133
.lml
,0100

J

o
.0563
● 0793
,1135
.1-589
.2208
.2663
.3029
● 3599
.4026
.,4353
.4691
.4783
.49o6
.4977
. woo
● 4944
.4778
.4509
● 4139
.3675
.3121
.2481
.1762
.0966
.0100

K

o
.0574
.0808
● 11*
.1620
.2252
.2TL6
.3089
.3667
: 40;;

.4663

.4833

. 4g42
● 4994
.4994
.k873
.4656
.4342
● 3939
.3455
.2899
.2277
.1598
.0870
● 0100

L

o
. Ow
.0823
● U80
.1.652
.2298
.2771
● 3151
.3738
.4170
● 4492
.4724
.4881.
,4971
. moo
.4931
.4781
. k522
.4175
● 3751
.3258
.2706
.2105
● 1464
.0793
.0100

.

M

o
.0606
.0854
.=26
.lpo
.2396
.2892
.3288
● 3893
,4328
.4638
.4844
.4962
. moo
.4g48
.4797
.4558
.4241
.3856
.3413
.2921
.2393
.1836
. k262
.0680
.0100

N

o
.0627
.0886
.1275
.1794
.2w8
.3031
; $A;

.4503

.4788

. 49k9

. ~oo

.4953
; l++:

.4320
● 3975
.3578
.3138
.26&
.2165
. 16%
.11.28
.0609
.0100

.

.— .-
.
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NACA TM 1351

TABLE 2.- AUXIIJARY FUNCTION
,

PRESSURE DISTRIB~ION ;F

x

o.o125
.025
.05
.10
.20
.30
.40
.m
.60

:E
●9O
● 95
● 975

I

0.59
.66
● 75
.86
.96

1.02
1.05
1.08
1.12
1.09

.89
● 33

-.32
-.95

J

1*I-O
1.06
1.04
1.03
1.03
1.04
1.05
1.17
1.18

.98

.65

.06
-.47
-993

B~ ASS031A’llEDWITH THE

SYMMETRICAL SECTIONS

K L

1.13 1.16
Log I 1.13
1.07 1.11
1.07
1.08
1.09
1.10
1.19
1.11

.88

.52
-.03
-*W
-.91

1.11
1.12
1.14
1.15
l.lg
1.05

● 79
.42

-.10
-.52
-*M

M

1.20
1.20
1.20
1.21
1.22
1.23
1.23
1.14

%
.28

-.18
-*53
-.84

N

1.24
1.26
1.29
1.33
L36
1.33
1.22
1.04

.80

.51
● lg

-.22
-.52”
-.-m

.

.
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TABLE 3.- AUXILIARY FUNCTION Bc ASSWUTED WI~ TEE

PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIONS

x I J K L M N

0.0125 -4.04 -4.40 -4.88 -4.9 -5.20 -5*3O
.025. -2.86 -3.08 -3.20 -3.22 -3*37 ‘

-2.04
-3.55

.05 -2.08. -2 ● 13 -2. 1~ -2.28 -2 ● 39

.10 ‘ -1.39 -1.33 -1*35 -1.37
-.83

-1.42 -1.48
.20 -.74 -.74 -.74 -.74 -.70
● 30 -.9 -.43 -.41
.40

-*39 -.31 -.21
-.24 -.19 -.17 -.12 .00 .18

.x .00 .00

.6)
,11 .22

● 39 ●5Q
.27 .44

● 53 .&l
.65

● 70 ● 75
●P .83 .89 ●W ● 94 .91

1.11 1.19 1.18 1.15 1.09 . 1.02
:: 1.70 l.p 1.41 1.31 1.16 1.04
● 95 2.03 1.66 1.36 1.16 1.03
.975 2.20 .1.73 ::2 1.38 1.15 1.02

.

.

.
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TABLE 4.- ORDINATES

x

o
.003
.006
.o125
.025
.0%
.075
.10
.15
.20
.25
● 30
.35
.40
.45
.50
● 55
.60
.65
.70
● 75
.&)
.85
.9
● 95

1.00
c for M/f = 1

o
.0295
.0529
.0969
.1687
. 28@I
.3843
. 46go
. 609E
.7219
.8113
.8813
.9341
.9710
.9928

1.0000
.9928
● 9710
.9341
.8813
.8113
. 7!219
. @98
. 46w
.2864

)
. no

FOR MEAN CAMBER LINES. VALUES OF M/f

D1 D3 D5

o 0 0
.0282 .0292 .0300
.0509 .0526 .O*O
.0914 .0969 .0995
.1636 .1695 .1740
.2797 .2897 .2973
.3772 .3907 .4006
.4620 .4784 .4~2
.6045 .62y .6396
.7191 .7424

● 7579
.81S2 .8353 .8507
.8838 .9067 .9207
.9384 ● 9579 .9688
.9758 .9892 ● 9953
.9962 1.0000 .9988
.9988 .9881 .9761
.98~3 .9472 .9178
.9414 .8735 .8192
.8794 .7704 .65Q3
.7878 .64- .5474
.6898 .5108 .4078
.5673 .3766 .2847
.4305 .2535 .1846
.2845 .1493 .1o71
.1366 .0651 .047’2

0 0
.482 .450 0.433

)
.0371
.0666
● 1220
.2119
● 3585
.4787
; 5$0;

.8638

.9451

.9898

.9963
● 9589
.8625
.6300
.3885
.2646
.1811
.1207
.0772
● 0459
.0242
.0101
.0024

)
● 333

E4

)
.0313
.O*
.1039
.1814
.3093
. 4~6~
. %84
. 66~5
.7812
.8733
.9387
.9826
.9998
.9872
.9387
.8561
.7473
.6259
. 4g18
.3682
.2~o
.1686
.0973
.0425

)
.406

F3

)
.0327
.o~
.1081
.1887
. 32E
,4315
. p66
.6831
.8041
●WQ
.9586
● 9939
● 9973
.9679
.9085
.8238
.7204
.60~
. 48TL
.3721
.2669
.1761
● 1020
.0442

)
.381
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TABLE ~.- AUXILIARY FUNCTION A= ASSOCIATED WITH THE

x

0.0325
.025
.05
● 10
.m

:$

:Z
~TJ

●9O
.90
● 975

PRESSURE DISTRIBUTION OF MEAN CAMBER -S

4.53
4.53
4.53
4.53
4.53
4.53
;.;;

4:53
4.53
4.53
4.53
4.53
4.33

-0.53
.88

1.89
2.61
3.15
3.40
3.%
3.68
3.61
3.19
2.43
1.34

.6a
●33

D3

-2.5Q
-.47

.99
2.03
2.80
3.17
3.40
3.57
3.21
2.07

● 75
-.05
-.15
-.o8

D5

-3.17
-.91

.71
1.88
2.75
3 ● 15-
3.41
3.61
2.95
1.31

.05
-.26
-.2Q
-.14

-5.49
-2 ● 17

.22
1.9

:%
4.18
4.46

-1.03
-.83
-.63
-.42
-.29
-.20

E4

-3.51
-1.07

.67
1.93
2.85
3.29
3.57
3.W
2.35
1.00

● 03
-.26
-.21
-.15

F3

-3.62
-1.08

.74
2.05
3.01
3.46
3.61
3.10
2.14
1.04

● 17
-.22
-.21
-.15

—
*“

.
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TABLE 6.- AUXILIARY FUNCTIOi? As ASSCX21ATEDWITH THE

PRESSURE DISTRIBUTION OF MEAN CAMBER LIKES

x

0.0125
.025
.05
.10
.20
.30
.40

%

:E
.90
.95
.975

Do

-6.31
-5.28
-4.25
-3.17
-1.99
-1.21
0-.58

.58
1.21
1.99
3.17
4.25
5.28

-6. ~3
-5.18
-4.21
-3.19
-2.05
-1.27

-:;:

1.02
1.90
2.61
2.97
2.91
2.75

D3

-6.35
-5.37
-4.36
-3.29
-2.09
-1.22
-.43
.50

1.79
2.63
2.60
1.88
L.63
1.59

D5

-6.52
-5.50
-4.46
-3.36
-2 ● 10
-1.18

-.31
.76

2.32
2.87
2.24
1.35
1.05

● 94

-7*92
-6.61
“-5.25
-3.78
-2,00

-.52
1.26

2:00
1.02
.52
.21
● 10
.05

E4

-6. B
-5.73
-4.63
-3.46
-2.11

1.09
-.07
1.33
2.38
2.30
2.00
1.25

,91
.82

49

F3

-7.07
-5.94
-4.79
-3.55
-2.11

-*99
.26

1.46
2.21
2.36
i.g7
1.31
1.01

● 88

.

.
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TABm 7.- PRESSUREDD?FERENCE DISTRIBUTION G FOR MEAN CAMBER LIN~ .

x Do D1 D3 D5 D. E4 F3

o.o12~ 4.53 4.22 4.34 4.47 5.p 4.70 4.93
.025 4.53 4.22 4.34 4.47 4.70 4.93
.05 4.53 4.22 4.34 4.47 ;:; 4*P 4.93
.10 4.53 4.22 4.34 4.47 5.72 4.70 4.93
.20 4.53 4.22 4.34 4.47 5.72 4.70 4.93
.30 4.53 4.22 4.34 4.47 5.72 4.70 4.93
.40 4.53 4.22 4.34 4.47 5.72 :.g 4.78

4.53 4.22 4.34 ;.:; 5972
:%

4.06
4.53 4.05 3.84 0 3:10 2.92
4.53 3.5.4 ;.~{ 1187 0

:E 4.53
1.63 2..67

2.70 . .48 0 .49 .65
●9O 4.53 l.y .20 .03 0

~.;: .8Q
.05 .11

●95 .03 .00 0 .00 ,02
.975 ● .41 .00 .00 0 ,00 .00,

.

.

.
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x

No62~
.o125
.025
.Ow
.07’5
.10
.15
.al
.25
●3
.40
.Y

TABIE 8.- AIRFOIL UTI!EIUNITORM DISTRIBUTI~ OF PREMllRE

u

0.9875
-*975
-.95
-.90
-.85
-.&1
-*P
-.60

-.50
-.40
-.20
0

-

? = 0.1

1.393
1.274
1.183
1.109
1.076
1.057
1.035
1.022
1.013
1.oo8
1.002
l.m

1.6m
1.485
1.328
1.204
1.145
1.1o
1.0d
1.042
1.026
1.015
1.oi)4
1.000

~.w
1.670
1.468
1.298
1.214
1.163
l.lccl
1.064
1.040
1.024
1..cQ6
1.OM

! = 0.1

o.~3

●955
.934

●P3
.919
.917
.915
.915
.914
.914
.913
.913

! = 0,2

1.089
●W
.gll
.870
.855
4!4;

.835

.833

.83I.

.83tI

.830

? = 0.:

1.204
1.033
.913
.830
●N
:g

● 753
●*
.W
.741

.*

u

‘.987!
●975
995
.90
.85
●&)
●P
.63

●Y
.40
.20

x

).99375
.9875

.975

.950

.925
●!W
.85
.80
● 75
.70
.60

.W

ul
I-J
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